kunstbus

Ben jij de slimste mens? Test je kennisniveau op YaGooBle.com.
Dit artikel is 17-11-2009 voor het laatst bewerkt.

Isaac Newton

Sir Isaac Newton (Woolsthorpe-by-Colsterworth, 4 januari 1643 – Kensington, 31 maart 1727) (Juliaanse kalender: 25 december 1642 – 20 maart 1727) was een Engelse natuurkundige, wiskundige, astronoom, natuurfilosoof, alchemist en theoloog.

In de wiskunde ontdekte hij onder meer de differentiaalrekening en de integraalrekening (met Leibniz) en verder het Binomium van Newton en benaderingsmethoden.

In zijn hoofdwerk Philosophiae Naturalis Principia Mathematica uit 1687 beschreef Newton onder andere de zwaartekracht en de drie wetten van Newton, waardoor hij de grondlegger van de klassieke mechanica werd.

Op het gebied van optica schreef hij het standaardwerk Opticks, vond hij de Newton-telescoop uit en ontwikkelde hij een theorie over kleuren, gebaseerd op het prisma, dat van wit licht een zichtbaar spectrum maakt. Hij bestudeerde ook de geluidssnelheid.

Volgens een peiling uit 2005 beschouwden leden van de Britse Royal Society Newton als de grootste geleerde in de hele geschiedenis van de wetenschap. Anders dan Albert Einstein was Newton naast theoreticus ook een briljant experimentator.

Jeugd en studiejaren
Newton werd geboren als enig kind van John Newton en Hannah Ayscough in Woolsthorpe-by-Colsterworth, een gehucht van Lincolnshire op 15 kilometer ten zuidwesten van Grantham. Volgens de Gregoriaanse kalender, die in Engeland pas in 1752 de Juliaanse kalender verving, werd Newton geboren op 4 januari 1643. Volgens de Juliaanse kalender, die gedurende Newtons leven van kracht was in Engeland, leefde hij van 25 december 1642 tot 20 maart 1727.

Newtons ouders waren niet onbemiddelde boeren. Zijn vader overleed drie maanden voor zijn geboorte. Hij werd te vroeg geboren en aanvankelijk werd voor zijn leven gevreesd. Toen hij pas drie jaar oud was, hertrouwde zijn moeder met de Anglicaanse geestelijke Barnabas Smith, een welgestelde maar kinderloze weduwnaar, bij wie zij dadelijk introk in het naburige North Witham. Newton werd aan de zorgen van zijn grootmoeder en zijn oom overgelaten. De motieven voor dat laatste zijn niet helemaal duidelijk. Zijn moeder lijkt wel degelijk van hem gehouden te hebben[4]. Het heeft hem echter voor het leven getekend. Uit Newtons persoonlijke aantekeningen blijkt, dat hij de tweede man van zijn moeder gehaat heeft. Tot zijn zestiende volgde hij zijn lagere en middelbare schoolopleiding in Grantham, waar hij bekend werd door zijn fraaie mechanische modellen: poppenmeubels voor meisjes, een kar met handaandrijving voor de inzittende, zonnewijzers, windmolens en vliegers met lantarens die hij 's nachts opliet.

Toen Newton tien jaar was, werd zijn moeder voor de tweede maal weduwe en keerde ze terug naar Woolsthorpe. Isaac kreeg er een stiefbroer en twee stiefzussen bij. Zijn moeder hoopte dat haar oudste zoon het landbouwbedrijf dat ze van haar tweede man had geërfd, zou uitbaten. Het boerenbedrijf boeide Newton echter helemaal niet en hij vroeg om verder te mogen studeren. Hij vertrok op zijn achttiende jaar (1660) naar Cambridge. De ontmoeting met de wiskundige Isaac Barrow maakte een diepe indruk op hem. Hij bestudeerde er onder andere de Elementen van Euclides, de Geometria van Descartes, de Arithmetica infinitorum van Wallis en de Dialogo van Galilei.

Hoogleraar in Cambridge
In 1669 werd hij benoemd tot Lucasian professor, d.w.z. hoogleraar wiskunde aan de Universiteit van Cambridge, een leerstoel ingesteld door Henry Lucas. In die tijd moesten alle wetenschappers van de universiteiten van Oxford en Cambridge gewijde geestelijken van de Anglicaanse kerk zijn, maar bij deze leerstoel werd bij wijze van uitzondering vereist dat de hoogleraar niet als zodanig actief zou zijn, waarschijnlijk om meer tijd voor de wetenschap vrij te kunnen maken. Newton vroeg en kreeg van koning Karel II ontheffing van de verplichting om tot geestelijke gewijd te worden. Newton was namelijk in het geheim aanhanger van het Unitarisme, een verboden ketterij in die tijd. Zo werd een conflict tussen Newtons godsdienstige opvattingen en de Anglicaanse kerk vermeden.

Newton werd lid van de Royal Society en was van 1703 tot 1727 voorzitter van dit wetenschappelijke genootschap.

Muntmeester
In 1696 verhuisde Newton naar Londen om muntmeester te worden. Hij pakte het werk op zijn gebruikelijke systematische manier aan en bestreed onder meer valsemunters. Van 1699 tot zijn dood was hij directeur van de Munt (Master of the Mint). Voor zijn werk bij de Munt werd hij geridderd door Queen Anne in 1705. In 1717 zorgde Newton voor de overgang van het Pound Sterling van de zilveren naar de gouden standaard die bijdroeg aan de welvaart van Engeland.

Persoonlijkheid
In een brief van 1677 aan zijn collega-onderzoeker en rivaal Robert Hooke schreef Newton bescheiden : "Als ik verder heb gezien dan anderen, komt dat doordat ik op de schouders van reuzen stond."

Aan het einde van zijn leven schreef Newton beeldend: "ik was als een jongen die op het strand speelt en zich vermaakt door een nog mooiere steen of schelp te vinden, terwijl de grote oceaan van de waarheid onontdekt voor mij lag."

In zijn persoonlijke leven was Newton volgens sommige biografen bepaald een zonderling.[bron?] Als jongen trok Newton liever met meisjes op dan met jongens, want hij hield niet van ruwe spelletjes. In zijn volwassen leven had hij geen belangstelling voor vrouwelijk schoon en sommigen suggereren daarom dat Newton (heimelijk) homoseksueel was. Maar bewijzen hiervoor ontbreken. Mogelijk speelde een rol dat Newton door zijn moeder was verlaten.

Newton was ook een dierenliefhebber en had een hond, Diamond genaamd. De uitvinding van het kattenluikje wordt aan hem toegeschreven.

Belangrijkste ontdekkingen

Wiskunde
Als wiskundige staat Newton bekend als de medeontdekker van de infinitesimaalrekening (een verzamelterm voor differentiaalrekening en integraalrekening), samen met Gottfried Wilhelm Leibniz, met wie hij een geweldige ruzie heeft gehad over de prioriteit van deze bijdrage, zonder welke technische toepassing van de wiskunde nu niet meer is voor te stellen. Het binomium van Newton is naar hem genoemd, alsmede een numerieke iteratie-methode, die nu de Newton-Raphsonmethode heet. Verder zijn de Newton-Cotes formule voor numerieke integratie en ook de 'formules van Newton' voor voorwaartse en achterwaartse interpolatie naar hem genoemd.

Klassieke mechanica
Theoretische innovaties
Newton schreef van 1684-1686 de Philosophiae Naturalis Principia Mathematica in het Latijn, beter bekend als de Principia. Hierin beschrijft hij wat nu de wetten van Newton heten, waarmee hij de grondlegger werd van de Klassieke mechanica, alsmede de wet van de gravitatie ofwel zwaartekracht. De wetten van Newton definiëren de basisbegrippen impuls (hoeveelheid beweging, massa × snelheid), kracht en massatraagheid in hun onderlinge samenhang waarmee, anders dan in de fysica van bijv. Aristoteles, een kwantitatieve beschrijving en voorspelling van beweging mogelijk is. Het centrale idee van de gravitatietheorie, dat lichamen met massa elkaar aantrekken, was volstrekt nieuw. Bovendien werd deze hypothese wiskundig geformuleerd.

Hij kon met al die wetten in combinatie de banen van planeten om de zon nauwkeurig narekenen. De empirische wetten voor planeetbanen, die Johannes Kepler al tussen 1609 en 1619 had ontdekt en geformuleerd als de wetten van Kepler, kregen hiermee een theoretische basis. De baan van de komeet van Halley, alsmede de vorm van de staart konden er ook mee worden verklaard.

De getijdenbewegingen kon Newton met dezelfde wetten verklaren, uit de aantrekkingskracht van de maan.

De door hem ontwikkelde nieuwe wiskunde, de differentiaalrekening, speelde bij dit alles een instrumentele rol.

Anekdote van de appel en de maan
Tijdens de pestepidemie in 1666 moest de jonge Newton zijn studie in Cambridge onderbreken en keerde hij terug naar zijn geboorteplaats. Uit die periode stamt de anekdote van de appel en de maan. Hij bestaat in vier versies en wordt door verschillende schrijvers uit die tijd genoemd. Newtons neef John Conduitt vertelt in zijn biografie van Newton, dat deze in de boomgaard van zijn moeder lag te peinzen. Waarom viel de maan niet op de Aarde, net zoals de appel die hij op de grond zag vallen? Het antwoord op die vraag was toen nog niet duidelijk, maar door het stellen ervan brak Newton met het tweeduizend jaar oude idee van Aristoteles dat op aarde (bijv. voor een appel) en in de hemel (voor een hemellichaam als de maan) andere natuurwetten gelden.

De schrijver William Stukeley noteerde een gesprek uit 1726 in zijn Memoirs of Sir Isaac Newton's Life waarin Newton zelf zich herinnerde hoe het begrip gravitatie in hem op kwam: "Het werd veroorzaakt door het vallen van een appel, toen ik zat te peinzen."

De anekdote geeft een stap aan in het rijpingsproces van Newton.

Op het terrein van National Physical Laboratories in Teddington (ten zuidwesten van Londen) staat een boom die volgens de overlevering gekweekt is uit een zaadje van de legendarische appelboom waaruit Newton een appel zag vallen.

Optica
Naast de Principia publiceerde hij de Opticks, een werk over optica in het Engels.

. Newton toonde aan dat wit licht is samengesteld uit alle kleuren van de regenboog met zijn bekende prisma-experiment: verder ontleden van die kleuren bleek niet mogelijk en samengevoegd leveren deze dus kennelijk elementaire kleuren weer wit licht op.
. Licht bestond volgens Newton uit deeltjes, waarmee hij breking en weerkaatsing van licht verklaarde. Dit deeltjesmodel werd later vervangen door het golfmodel van zijn oudere tijdgenoot Christiaan Huygens, dat interferentie makkelijker kon verklaren.
. Een door hem ontdekt interferentie-effect is naar hem vernoemd: de Newtonringen.
. Pas in de 20e eeuw werd er toch weer een deeltjesaspect onderkend aan licht - het foton -, dankzij Albert Einsteins bijdragen aan de kwantummechanica.
. Ter voorkoming van chromatische aberratie ten gevolge van kleurschifting, die bij breking door lenzen onvermijdelijk is, bedacht en construeerde Newton de Newton-telescoop, waarvan het beginsel nog steeds toegepast wordt.
. Newton beschreef ook diffractie (buiging) van licht - het experiment met de stoffige spiegel - dat in 1801 door Thomas Young werd verklaard, al was het dan met het golfmodel.

Warmteleer en hydrodynamica
Voor de warmteleer formuleerde Newton een wet voor afkoeling: Newtonkoeling, waarbij de afkoelsnelheid evenredig is met het temperatuurverschil met de omgeving. Een eeuw later zou die worden uitgewerkt door Joseph Fourier, om te beginnen met de Wet van Fourier, en vervolgens met een wiskundig geavanceerde Théorie analytique de la chaleur.

Newton kan niet als de grondlegger van de hydrodynamica worden beschouwd (dat was Blaise Pascal), maar hij beschreef wel het gedrag van wat nu Newtonse vloeistoffen heten, die een viscositeit hebben die onafhankelijk is van de schuifspanning. Deze beschrijving zou zonder de differentiaalrekening ondenkbaar zijn.

Wetten van Newton

Eerste wet: traagheid of inertie
Als de som van de krachten op een voorwerp nul is, dan is de versnelling nul. Een voorwerp beweegt dan met een constante snelheid in een rechte lijn, of is in rust.

Een andere formulering van de eerste wet: Als er geen netto kracht werkt blijft een voorwerp volharden in zijn bewegingstoestand, namelijk hetzij eenparig rechtlijnige beweging of stilstand.

Om de bewegingstoestand van een voorwerp te veranderen is een resulterende kracht nodig die ongelijk is aan nul. Deze resulterende kracht is de optelsom van alle vectoriële krachten die op het voorwerp inwerken.

Tweede wet: hoofdwet van de mechanica
De verandering in beweging (impuls) van een voorwerp is gelijk aan de resulterende kracht die op het voorwerp werkt.
De tweede wet definieert de eenheid van kracht in massa, afstand en tijd: 1 N = 1 kg m/s².
Met "resulterende" kracht in een bepaald punt wordt de nettokracht bedoeld die overblijft als alle krachten in dat punt bij elkaar zijn opgeteld, rekening houdend met grootte én richting.

De newton (symbool N) is de SI-eenheid voor kracht. De eenheid newton is gedefinieerd als de kracht die een massa van 1 kilogram een versnelling van 1 m/s² geeft: Een massa van 1 kg ondervindt op aarde op de breedtegraad van de Lage Landen op zeeniveau een kracht van ongeveer 9,81 newton, aan de polen is dit 9,83 N en aan de evenaar 9,78 N. In het dagelijks leven wordt dit ook vaak afgerond op 10 newton.

Derde wet: actie en reactie
Als een voorwerp A een kracht uitoefent op een voorwerp B, dan oefent voorwerp B een even grote, gelijktijdige en tegengesteld gerichte kracht uit op A en omgekeerd. De derde wet wordt beknopt geformuleerd als 'actie = min reactie', maar dit is misleidend daar het om een gelijktijdig krachtenpaar gaat: er is geen actie voorafgaand aan een reactie. De derde wet is een speciaal geval van de wet van behoud van impuls.

Voorbeelden
. Een voorwerp van 1 kg waarop een constante nettokracht van 1 N wordt uitgeoefend, zal na 1 seconde een snelheid van 1 m/s in de richting van de kracht erbij hebben gekregen, na 2 seconden 2 m/s, enzovoorts.
. Aan een voorwerp dat op de grond ligt, wordt door de zwaartekracht getrokken, maar het ondervindt volgens de derde wet van de grond een even grote, tegengesteld gerichte reactie- of normaalkracht. Het voorwerp blijft dus stilliggen.
. Een voorwerp in de vrije ruimte boven het aardoppervlak krijgt zo'n reactiekracht niet (als de wrijving van de lucht verwaarloosd wordt) en raakt dus in 'vrije val'. Omdat volgens de zwaartekrachtwet de zwaartekracht evenredig is met de massa van het voorwerp, hebben alle voorwerpen in vrije val in het luchtledige dezelfde constante versnelling. Op het aardoppervlak bedraagt deze ongeveer 9,81 m/s².

Mechanica en zwaartekracht
De toepassing van identieke wetten op 'hemelse' en 'aardse' verschijnselen betekende een breuk met een tweeduizend jaar oude gedachte van de antieke Griekse natuurfilosofen.

In de loop van de 18e en 19e eeuw zou de klassieke mechanica in wiskundig opzicht aanzienlijk uitgebreid worden door grootheden als Leonhard Euler, Lagrange, Laplace en William Hamilton. Het wetenschappelijke wereldbeeld werd steeds meer deterministisch. Het scherpst werd dit geformuleerd door Laplace, die in 1814 stelde dat het in principe mogelijk moet zijn om vanuit het heden de hele geschiedenis en de hele toekomst van het universum uit te rekenen. Aan het eind van de 19e eeuw kwam de statistische mechanica erbij, die nog uitging van in essentie deterministisch gedrag van een zeer groot aantal deeltjes; deze is vooral bruikbaar voor gasmoleculen.

Een staaltje van het voorspellend vermogen van de gravitatietheorie werd gegeven toen de nauwkeurigheid van waarnemingen van planeetbanen in de loop van de 19e eeuw toenam. Er werden afwijkingen ten opzichte van de 'klassieke' baan van Uranus waargenomen. Dit leidde tot de hypothese van het bestaan van een nog onbekende planeet, die met zijn eigen zwaartekrachtveld de baan van Uranus in het zwaartekrachtveld van de zon verstoorde. In 1846 werd inderdaad een planeet, die Neptunus zou gaan heten, op de berekende plaats waargenomen.

De grondlegging van de klassieke mechanica was niet alleen voor filosofen, theoretici en astronomen van het hoogste belang, ook de toepasbaarheid in meer praktische zaken kan nauwelijks overschat worden. Tot dan toe bestond technologische ontwikkeling voornamelijk uit knutselen op goed geluk, gebaseerd op praktische ervaring. Sinds Newtons definitie van de basisbegrippen kracht, impuls en massa is het mogelijk geworden natuurwetenschap en technologie te combineren, zodat een technisch ontwerp met wetenschappelijke precisie kan worden doorgerekend. De eenheid van kracht, de newton, is daarom naar hem vernoemd.

Relativiteit en kwantummechanica
Aan het einde van de 19e eeuw werd wel gedacht dat de natuurkunde vrijwel klaar was. Maar juist toen liep de klassieke natuurkunde tegen grenzen aan. De lichtsnelheid bleek in alle richtingen gelijk te zijn. Als er een zogenaamde ether als voortplantingsmedium in de kosmos zou bestaan, gekoppeld aan een universeel en absoluut coördinatenstelsel, dan zou de beweging van de aarde door het heelal de gemeten lichtsnelheid moeten beïnvloeden. De baan van de planeet Mercurius bleek een rozet in plaats van een ellips zoals de Wetten van Kepler uit de Wetten van Newton voorspelden. Bovendien leverde Newtons veronderstelling van een uniforme tijd in het universum tegenstrijdigheden op met de pas ontwikkelde algemene theorie van het elektromagnetisme. Vanaf 1905 zou Albert Einstein een wezenlijke uitbreiding van Newtons beginselen ontwikkelen met zijn relativiteitstheorie en deze problemen oplossen.

Max Planck constateerde vrijwel tegelijkertijd dat stralingsenergie niet helemaal continu, maar met kleine pakketjes tegelijk wordt afgegeven. Met de klassieke mechanica is dit niet te verklaren. Deze pakketjes noemde hij quanta en dat gaf de aanzet tot de kwantummechanica, waarmee het deterministische wereldbeeld werd ondermijnd en de weg gebaand werd voor de statistische benadering van de onderliggende natuurwetten van de materie. Hiermee kon men beter subatomaire verschijnselen beschrijven en verklaren dan mogelijk was met de 'klassieke' Newtoniaanse wetten.

Theologie
Behalve voor exacte wetenschappen had Newton ook voor andere onderzoeksterreinen belangstelling. Hoewel Newton zijn roem geheel dankt aan zijn prestaties als natuur- en wiskundige, is hij een groot deel van zijn leven meer bezig geweest met theologie en andere Bijbelse disciplines dan met exacte wetenschap. Naar eigen zeggen lag daar zelfs zijn grootste liefde. Hij schreef veel over onder meer Bijbelse chronologie en tekstkritiek. Na zijn dood werden enkele van zijn theologische werken uitgegeven.

Alchemie
Naar hedendaagse inzichten was Newton soms met 'onwetenschappelijke' zaken bezig, met name de alchemie. Dankzij Newtons reputatie op het gebied van de alchemie verkreeg hij op instigatie van Charles Montague de betrekking van ‘warden’ (muntmeester) aan de Koninklijke Munt in Londen. Overigens was Newtons interesse in zijn tijd niet abnormaal want de meeste grote geleerden van zijn tijd en zelfs tot ver in de 18e eeuw, hadden actieve belangstelling voor alchemie en astrologie. Heden worden deze disciplines meestal onder de noemer pseudowetenschap gebracht. Newtons nagelaten persoonlijke bibliotheek bleek na inventarisatie 126 boeken over alchemie te bevatten, waardoor duidelijk werd dat gedurende zijn wetenschappelijke carrière Newton er ook een andere grote passie op nahield.

De econoom John Maynard Keynes veilde in 1936 een groot deel van de alchemistische manuscripten van Isaac Newton voor het King's College te Cambridge. 369 boeken uit de persoonlijke bibliotheek van Newton hadden een wetenschappelijk karakter, 170, echter, zijn werken over de Rozenkruisers, de kabbala en alchemie. Newton had zelf een alchemistische index aangemaakt met 100 auteurs en 150 teksten en 5.000 pagina verwijzingen met 900 trefwoorden aangelegd. Jan Golinski geloofde dat Newton dit had gedaan in de hoop er een samenhangend geheel en een samenhangende leer uit te kunnen afleiden. Betty T. Dobbs zei dat Newton de alchemistische literatuur tot de 17e Eeuw zeer zorgvuldig had bestudeerd en dit gedurende 30 jaar zonder onderbreking. The Newton biograaf Richard Westfall schrijft: "Newton verloor zijn eerste liefde [bedoeld is de alchemie] nooit uit het oog". Westfall gaat ervan uit dat alchemistische overwegingen ook bij Newtons 'Hypothesis of Light' (1675) waren opgenomen en dat Newtons beschouwingen over de banen van de planeten door de alchemie beïnvloed waren. Betty T. Dobbs schrijft: "Zijn herinvoering van het concept van aantrekking in zijn 'Principia', en zijn afwijzing van een zich op de 'Ether' beroepende mechanica als verklaring voor de zwaartekracht leken Westfall en mij een voldoende argument voor de invloed van de alchemie op zijn denken. Veel alchemistische verhandelingen gaan immers uit van niet-mechanische actieve principes die conceptueel vergelijkbaar zijn met de zwaartekrachttheorie van Newton." John Maynard Keynes, die veel van Newtons alchemistische geschriften had verworven, verklaarde: "Newton was not the first of the age of reason: he was the last of the magicians." (Newton was niet de eerste vertegenwoordiger van het tijdperk van de rede, hij was de laatste van de magiërs).


Copyright, This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article http://nl.wikipedia.org/wiki/Isaac_Newton
Test je competentie op YaGooBle.com.

Pageviews vandaag: 860.